Prediction of mechanical equipment fault diagnosis based on IPSO-GRU deep learning algorithm

Author:

Wang Peng1,Tan Hangbo1,Ji Chao1

Affiliation:

1. 1 Wuxi Xuelang Industrial Intelligence Technology Co., Ltd ., Wuxi , Jiangsu , , China .

Abstract

Abstract Exploring effective logistics machinery and equipment fault diagnosis and prediction technology to achieve efficient and stable operation of logistics machinery and equipment. In this paper, starting from the logistics machinery and equipment fault diagnosis technology, we optimize the hyperparameters of the recurrent gate unit neural network by using the improved second-order oscillatory particle swarm algorithm and then construct the IPSO-GRU logistics machinery and equipment fault prediction model. The IPSO-GRU model is used to test the prediction effect of the hydraulic lift table and logistics hoist by using the historical data of the hydraulic lift table as training data. The prediction accuracy of the IPSO-GRU model was improved by 6% compared with BP neural network. From the prediction results of the logistic hoist, only 6 out of 250 data samples failed to achieve accurate prediction. This shows that the IPSO-GRU model can effectively achieve the prediction of logistics machinery and equipment fault diagnosis and also provides a proven method for predictive maintenance of logistics equipment.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Engineering (miscellaneous),Modeling and Simulation,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3