Affiliation:
1. Department of Mathematics , Ağrı İbrahim Çeçen University , Ağrı , Turkey
Abstract
Abstract
In this paper, we give an explicit form of the scalar curvaure for the limiting case of the eigenvalue of the hypersurface Dirac operator which arises in the positive mass theorem for black holes. Then, we show that the hypersurface is an Einstein.
Subject
Applied Mathematics,Engineering (miscellaneous),Modeling and Simulation,General Computer Science
Reference20 articles.
1. C. Bär, (1992), Lower eigenvalue estimates for Dirac operators, Math. Ann., 293(1), 39–46.
2. S. Eker, (2020), Lower Bound Eigenvalue Problems of the Compact Riemannian Spin-Submanifold Dirac Operator, Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 13 (ÖZEL SAYI I), 56–62.
3. S. Eker, (2020), Lower Bounds for the Eigenvalues of the Dirac Operator on Spinc Manifolds, Iranian Journal of Science and Technology, Transactions A: Science, 44(1), 251–257.
4. M. Ergen, (2020), Some Estimates for the Spin-Submanifold Twisted Dirac Operators, Turkish Journal of Science, 5(1), 8–15.
5. T. Friedrich, (1980), Der erste Eigenwert des Dirac-Operators einer kompakten, Riemannschen Mannigfaltigkeit nichtnegativer Skalarkrümmung, Math. Nachr., 97(1), 117–146.