Optimization of Food Processing Parameters Based on Parametric Models

Author:

Shang Zhuying1

Affiliation:

1. 1 Ningxia Polytechnic , Ningxia , Yinchuan , , China .

Abstract

Abstract In this paper, a food processing process optimization model is constructed based on the improved particle swarm algorithm. By adding the chaos mapping strategy to the basic particle swarm algorithm, the optimization efficiency of the particle swarm under the constraints is improved. Combining the multi-objective optimization capability of the NDWPSO algorithm, the process parameter optimization process is constructed to optimize the parameters of food processing processes. The proposed method for process parameter optimization is applied to the vacuum drying process parameter optimization experiment of Jujube to test the effectiveness of particle swarm process parameter optimization. The results show that the diversity value and the best-adapted value of the NDWPSO algorithm in the single-peak function only use a small number of iterations to drop to a level close to 0, indicating that the NDWPSO algorithm has a faster convergence speed. In the vacuum drying process of jujube, the theoretical values of the optimal process parameters for freeze-dried jujube slices are: jujube slices thickness 5mm, sublimation drying temperature -22℃, resolution drying temperature 20℃.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3