Knowledge graph construction and Internet of Things optimisation for power grid data knowledge extraction

Author:

Sun Xiangju1,Hao Ting1,Li Xing2

Affiliation:

1. Internet Division of State Grid Gansu Electric Power Company , Lanzhou , , China

2. Gansu Tongxing Intelligent Technology Development Co. LTD , Lanzhou , , China

Abstract

Abstract Problems exist in power grid data management that have unclear relationships, weak security and low accuracy. By analysing the knowledge graph construction characteristics of smart grid data information and knowledge extraction, the grid data management platform is reshaped architecturally, and the knowledge graph construction technology is embedded in the grid data management framework. For the aforementioned problems, the knowledge graph construction and Internet of Things optimisation framework of power grid data knowledge extraction are proposed in this article. Firstly, the semantic search (KGSS) algorithm based on the knowledge graph is used. The KGSS algorithm extracts knowledge from structured, semi-structured and unstructured grid data through the massively parallel processing acquisition model and Hadoop database, and constructs knowledge entities, attributes and inter-entity relationships. Then, it optimises and predicts through the knowledge graph construction and Internet of Things optimisation framework extracted from power grid data knowledge. Finally, the experimental results show that the accuracy rate of the KGSS algorithm is 92%. The experimental results also show that it provides new ideas and research directions for power grid data under big data in the future.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Engineering (miscellaneous),Modeling and Simulation,General Computer Science

Reference25 articles.

1. Tatebe O, Morita Y, Matsuoka S, et al. Grid Datafarm Architecture for Petascale Data Intensive Computing[C]//IEEE/ACM International Symposium on Cluster Computing & the Grid. ACM, 2001.

2. Vazhkudai S, Schopf J M. Predicting sporadic grid data transfers[C]//Proceedings 11th IEEE International Symposium on High Performance Distributed Computing. IEEE, 2002.

3. Efthymiou C, Kalogridis G. Smart Grid Privacy via Anonymization of Smart Metering Data[C]//Smart Grid Communications (SmartGridComm), 2010 First IEEE International Conference on. IEEE, 2010.

4. Kim Y J, Thottan M, Kolesnikov V, et al. A secure decentralized data-centric information infrastructure for smart grid[J]. Communications Magazine IEEE, 2010, 48(11):58–65.

5. Meng X, Zhixiang J I, Yang Y. Research on Big Data Platform and Its Key Technologies in Smart Grid[J]. Distribution & Utilization, 2015.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3