Analysis of Intelligent Control Strategy for Heavy Media Coal Separation Process Based on Deep Learning Model

Author:

Wang Yu1,He Jiexin1,Bai Dongyan1

Affiliation:

1. TianJin Design Engineering Chinacoal CO.,LTD ., Tianjin , , China

Abstract

Abstract Intelligent control of heavy dielectric coal beneficiation in coal plants is achieved with the help of deep learning models to optimize the control effect. In this paper, through the study of heavy dielectric coal separation methods and processes, a coal separation control optimization strategy based on a radial basis neural network optimized by the ant colony algorithm is proposed, and the RBF network is optimized by clustering using ant colony algorithm, which is used to determine the center and radius of the basic function of the RBF network. The suspension density, ash content of the fine coal and the level of the Hopper bucket, which affect the control effect, are selected as the inputs of the optimized model, and the control strategy is formulated according to the effect after adjusting the parameters. The experimental simulation results show that the ACO-RBF model has less oscillation when the ash value is changed, the final change is smoother, and the root mean square error of the ash value is 0.075%, which is 36.6% less than that of the PID algorithm. With the control strategy optimized by deep learning, the fluctuation range of the level of the qualified media barrel is controlled between 15 and 25 cm, and the volatility pattern of the level is more regular. The control system based on deep learning can better meet the requirements of the coal processing process and effectively improve the efficiency of a coal processing plant.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Engineering (miscellaneous),Modeling and Simulation,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3