Design and implementation of a virtual teacher teaching system algorithm based on facial expression recognition in the era of big data

Author:

Lu Rui1,Ji Feng1

Affiliation:

1. 1 Zhengzhou Vocational University of Information and Technology , Zhengzhou , Henan , , China .

Abstract

Abstract With the development of big data, virtual course teaching has developed rapidly. In virtual teaching, the lecturer’s position is pivotal, and the virtual teacher’s lecture mainly conveys information through intuitive facial expressions, so the effectiveness of facial synthesis is crucial. However, traditional facial expression synthesis methods suffer from local distortion and lack of subtle expressions due to driving complex topological models and delays due to large computational effort. To this end, this paper proposes a facial expression extraction method based on feature point texture mapping. First, a video face expression feature point tracking algorithm is designed. Firstly, we design a video face expression feature point tracking algorithm. We use a monocular camera to capture facial expression images, use a texture mapping algorithm to detect faces and extract face feature points, and add a time threshold processing mechanism to the relevant filtering algorithm to detect face frame tracking to realize face feature point tracking in video. Secondly, the parameters are controlled by face expression animation, including head pose and face expression parameters. The head pose is solved by the Laplace algorithm, and the head rotation matrix and translation vector are output to establish the coordinate system. Finally, the stability and real-time performance of the feature point texture mapping algorithm are verified by expression capture test and recognition effect. The results of this paper show that: in the expression capture test, the average data transmission time is about 1ms, and the total expression transmission time of each video image frame is 32ms, which is 1.23ms and 9.8ms shorter than the traditional algorithm, respectively; in the expression recognition effect test, the successful recognition rate is increased by 10.2% on average compared with the traditional algorithm; and in the application to the classroom teaching effect test, 86.6% of the students are satisfied with the virtual teacher. 86.6% of the students highly agreed with the virtual teacher teaching, and 83.3% of the students thought that the model had a positive effect on the learners’ learning, which proved the superiority, real-time, stability and practicality of the algorithm designed in this paper compared with the traditional algorithm. The research work in this paper also provides solutions to the problems of virtual course teaching.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Engineering (miscellaneous),Modeling and Simulation,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3