Research on the digital transformation path of banks in the era of big data

Author:

Xing Tong1

Affiliation:

1. School of Finance, Shandong University of Finance and Economics , Jinan, Shandong, , China

Abstract

Abstract This paper proposes a weighted large-scale data subspace clustering algorithm to enable it to adapt to the mega-customer environment for financial banks to respond quickly to customer data. Firstly, based on the K-means combined with a genetic algorithm, an improved method for the sensitivity problem of initial clustering center selection of K-means algorithm is proposed. By weighting the variables and streaming data batch processing method as a guide, the improvement method is proposed for the problem that the mean algorithm cannot identify the correct clustering center caused by the ultra-large-scale data environment, leading to the iteration number approaching infinity. The accuracy of the K-mean algorithm, the optimized initial clustering center algorithm, and the algorithm in this paper are 89.61%, 94.37% and 96.94%, respectively. In terms of running time, the highest running time of this algorithm is 10.96 seconds, which is faster than the running time of the other two algorithms. Finally, the financial analysis of the financial bank that completed the digital transformation with the help of the algorithm in this paper, the bank achieved a business of 150.832 billion yuan in 2021, an increase of 11% compared with the end of last year. Net profit achieved 44.883 billion yuan, an increase of 25.8% compared to the end of last year. Therefore, the algorithm in this paper has high advantages in terms of accuracy, efficiency, and practicality, proving that digital transformation can improve bank profits. It also provides a path and direction of transformation for various urban and agricultural commercial banks and other small credit unions.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Engineering (miscellaneous),Modeling and Simulation,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3