Tackling the Problem of Class Imbalance in Multi-class Sentiment Classification: An Experimental Study

Author:

Lango Mateusz1

Affiliation:

1. Institute of Computing Sciences , Poznan University of Technology , Poznań , Poland

Abstract

Abstract Sentiment classification is an important task which gained extensive attention both in academia and in industry. Many issues related to this task such as handling of negation or of sarcastic utterances were analyzed and accordingly addressed in previous works. However, the issue of class imbalance which often compromises the prediction capabilities of learning algorithms was scarcely studied. In this work, we aim to bridge the gap between imbalanced learning and sentiment analysis. An experimental study including twelve imbalanced learning preprocessing methods, four feature representations, and a dozen of datasets, is carried out in order to analyze the usefulness of imbalanced learning methods for sentiment classification. Moreover, the data difficulty factors — commonly studied in imbalanced learning — are investigated on sentiment corpora to evaluate the impact of class imbalance.

Publisher

Walter de Gruyter GmbH

Reference75 articles.

1. [1] Abbasi, A., France, S., Zhang, Z., Chen, H.: Selecting Attributes for Sentiment Classification Using Feature Relation Networks. IEEE Transactions on Knowledge and Data Engineering, 23 (3), 447-462 (2011).

2. [2] Baccianella, S., Esuli, A., Sebastiani, F.: Sentiwordnet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining. In Proc. of the Int. Conference on Language Resources and Evaluation (2010).

3. [3] Blagus, R., Lusa, L.: SMOTE for high-dimensional class-imbalanced data. BMC Bioinformatics, 14 (1), 1471–2105 (2013).

4. [4] Blitzer, M. D., Pereira, F.: Biographies, Bollywood, Boom-boxes and Blenders: Domain Adaptation for Sentiment Classification. In Proc. of the Annual Meeting of the Association for Computational Linguistics (ACL-2007), 440-447 (2007).

5. [5] Błaszczyński, J., Stefanowski, J.: Neighbourhood sampling in bagging for imbalanced data. Neurocomputing, 150 A, 184–203 (2015).

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3