Author:
Hoffmann Tomasz,Marciniak Andrzej,Szyszka Barbara
Abstract
Abstract
To study the Poisson equation, the central-difference method is often used. This method has the local truncation error of order O(h2 +k2), where h and k are mesh constants. Using this method in conventional floating-point arithmetic, we get solutions including the method, representation and rounding errors. Therefore, we propose interval versions of the central-difference method in proper and directed interval arithmetic. Applying such methods in floating-point interval arithmetic allows one to obtain solutions including all possible numerical errors. We present numerical examples from which it follows that the presented interval method in directed interval arithmetic is a little bit better than the one in proper interval arithmetic, i.e. the intervals of solutions are smaller. It appears that applying both proper and directed interval arithmetic the exact solutions belong to the interval solutions obtained.
Subject
General Computer Science,Theoretical Computer Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献