Artificial Neural Network for Estimation of Local Scour Depth Around Bridge Piers

Author:

Ali Ahmed Shakir Ali1,Günal Mustafa1

Affiliation:

1. University of Gaziantep , Faculty of Engineering, Department of Civil Engineering , Gaziantep , Turkey

Abstract

Abstract Local scour around bridge piers impairs the stability of bridges’ structures. Therefore, a delicate estimation of the local scour depth is vital in designing the bridge piers foundations. In this research, MATLAB software was used to train artificial neural network (ANN) models with four hundred laboratory datasets from different laboratory studies, including five parameters: pier diameter, flow depth flow velocity, critical sediment velocity, sediment particle size, and equilibrium local scour depth. The outcomes present that the ANN model with the Levenberg-Marquardt algorithm and 11 nodes in the single hidden layer gives an accurate estimation better than other ANN models trained with different training algorithms based on the regression results and mean squared error values. Besides, the ANN model accurately provides predicted local scour depth and is better than linear and nonlinear regression models. Furthermore, sensitivity analysis shows that removing pier diameter from training parameters diminishes the reliability of prediction.

Publisher

Walter de Gruyter GmbH

Subject

Water Science and Technology,Civil and Structural Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3