1. Ampofo, L., Collister, S., O’Loughlin, B., & Chadwick, A. (2015). Text Mining and Social Media: when Quantitative Meets Qualitative and Software Meets People. In P. Halfpenny, R. Procter, P. Halfpenny, & R., Procter (Eds.), Innovations in Digital Research Methods (pp. 161-191). SAGE.10.4135/9781473920651.n8
2. Apishev, M., Koltcov, S., Koltsova, O., Nikolenko, S., & Vorontsov, K. (2016). Additive Regularization for Topic Modeling in Sociological Studies of User-Generated Texts. Advances in Computational Intelligence, 169-184. Doi:https://doi.org/10.1007/978-3-319-62434-1_14.10.1007/978-3-319-62434-1_14
3. Borovikova, E. (2011, November 18). sklearn.feature_extraction.text.CountVectorizer. Retrieved May 31, 2020, from Scikit-learn: https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html.
4. Cioban, Ș., & Vîntoiu, D. (2020, May 20). Covid19_sentiment_analysis. Retrieved from https://github.com/stefanacioban/covid19_sentiment_analysis.
5. Dawn Breslin, S., Enggaard, T., Blok, A., Gårdhus, T., & Pedersen, M. (2020, May 23). How We Tweet About Coronavirus, and Why: A Computational Anthropological Mapping of Political Attention on Danish Twitter during the COVID-19 Pandemic. Science, Medicine, and Anthropology. Retrieved June 7, 2020, from http://somatosphere.net/forumpost/covid19-danish-twitter-computational-map/.