The Process of Acquiring, Collecting, Processing and Archiving Data for the SHM System Designed to Identify Defects in Thin-Walled Structures

Author:

Muchowski Tomasz1,Szeleziński Adam1,Murawski Lech1,Muc Adam1,Kluczyk Marcin2

Affiliation:

1. Gdynia Maritime University

2. Polish Naval Academy

Abstract

Abstract The article shows the results of the preparatory steps taken to create the artificial intelligence used in the automatic recognition of defects in ship thin-walled structures. The above steps are used to create a university private cloud and a computer system maintaining a dataset of vibration signal samples. In the article, a prototype of the private cloud was designed and developed, a model of the vibration sample was prepared, and a microservice was designed aimed at sharing the obtained data. The article demonstrates the results of the completed development.

Publisher

Index Copernicus

Subject

Safety, Risk, Reliability and Quality

Reference14 articles.

1. 1. Boras M., Balen J., Vdovjak K.: Performance Evaluation of Linux Operating Systems. 2020 International Conference on Smart Systems and Technologies 2020.10.1109/SST49455.2020.9264055

2. 2. Dreyfus G.: Neural Networks: Methodology and Applications. Springer 2005.

3. 3. Faraj A., Rashid B., Shareef T.: Comparative study of relational and non- relations database performances using Oracle and MongoDB systems. International Journal Of Computer Engineering & Technology Vol. 5. 2014.

4. 4. Gorinevsky D., Gordon G., Kumar A., Chang F.: Integrated SHM System for Commercial Aircraft Applications. 5th International Workshop On Structural Health Monitoring at Stanford 2005.

5. 5. Grossi E., Buscema M.: Introduction to artificial neural networks. European Journal of Gastroenterology & Hepatology. Vol 19. 2008.10.1097/MEG.0b013e3282f198a017998827

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3