Affiliation:
1. Department of Materials Engineering, Faculty of Mechanical Engineering , Lublin University of Technology , Nadbystrzycka 36 , Lublin , Poland
Abstract
AbstractComponents produced by additive manufacturing (AM) via direct metal laser sintering (DMLS) have typical as-fabricated surface defects. As a result, surface properties of AM products should be modified to increase their strength, anti-wear behavior, and at the same time ensure their high corrosion resistance. Surface modification via shot peening (SP) is considered suitable for AM of engineering devices made of 17-4PH (X5CrNiCuNb16-4) stainless steel. The objective of this study was to determine the effect of three types of peening media (CrNi steel shot, glass, and ceramic beads) on the corrosion resistance of specimens of DMLS 17-4PH stainless steel. Results demonstrated that SP caused steel microstructure refinement and induced both martensite (α) formation and retained austenite (γ) reduction. 17-4PH specimens peened showed the increase in surface hardness of 255, 281, and 260 HV0.2for ceramic, glass, and steel, respectively. DMLS 17-4PH specimens modified by SP exhibited different surface morphology, hardness, and microstructure and thus, these properties affect corrosion performance. The results implied that steel shot peened with steel shot showed the highest resistance to corrosion processes (Icorr= 0.019 μA/cm2), slightly worse with glass (Icorr= 0.227 μA/cm2) and ceramics (Icorr= 0.660 μA/cm2) peened. In the case of ceramic and glass beads, it was possible to confirm the presence of the above-mentioned particles in the surface layer after SP.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献