Fabrication of heterojunction MnTiO3–TiO2-decorated carbon nanofibers via electrospinning as an effective multifunctional photocatalyst

Author:

Yousef Ayman1,Zouli Nasser I.1,Maafa Ibrahim M.1,Hadidi Haitham M.2,Sallam Sahar3,Moosa Majed4,El-Halwany M. M.5

Affiliation:

1. Department of Chemical Engineering, College of Engineering , Jazan University , Jazan , Saudi Arabia

2. Department of Mechanical Engineering, College of Engineering , Jazan University , Jazan , Saudi Arabia

3. Department of Chemistry, College of Science , Jazan University , Jazan , Saudi Arabia

4. Department of Industrial Engineering, College of Engineering , Jazan University , Jazan , Saudi Arabia

5. Engineering Mathematics and Physics Department, Faculty of Engineering , Mansoura University , El-Mansoura , Egypt

Abstract

Abstract In this paper, we successfully synthesized heterojunction manganese titanate/titanate nanoparticles (MnTiO3–TiO2 NPs)-decorated carbon nanofibers (CNFs) employing the electrospinning process. The morphology, crystallinity, and chemical composition of the MnTiO3/TiO2-decorated CNFs is characterized via SEM, FESEM, STEM, TEM EDX, and XRD techniques. The synthesized nanocomposite exhibits good performance for photodegradation of methylene blue (MB) dye and hydrolysis of ammonia–borane complex for hydrogen releasing experiment in a batch reactor under visible light. A mathematical model was developed to predict the photocatalytic activity of the produced nanocomposite with various parameters. The operational parameters include the effect of the initial concentration, catalyst dosage, light intensity, and reaction temperature, which are studied to validate the mathematical model. The reaction rate constant of MB photodegradation is found to be 0.0153 min−1 for an initial MB concentration of 5 mg·L−1 with a catalytic dosage of 200 mg·L−1 at a reaction temperature of 25°C under a light intensity of 25 W·m−2. Similarly, the H2 generation employing TiO2@CNFs and MnTiO3/TiO2@CNFs under visible light irradiation is observed to be 0.31 mol and 2.95 mol, respectively, corresponding to an exposure of 10 min. We also demonstrated that the yield of hydrogen employing MnTiO3/TiO2@CNFs under visible light increases to 2.95 mol compared with 1.51 mol in darkness. Finally, comparisons were made between the experimental and model-predicted values of the reaction rate constant and final concentrations. Theoretical and experimental data of photocatalytic activity are found to be in good agreement for MnTiO3/TiO2@CNFs.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3