The structure and properties of laser-cladded Inconel 625/TiC composite coatings

Author:

Lont Aleksandra1,Poloczek Tomasz1,Górka Jacek1

Affiliation:

1. Welding Department, Faculty of Mechanical Engineering , Silesian University of Technology , Konarskiego Street 18A , Gliwice , Poland

Abstract

Abstract The article presents the research in the field of production of metal–matrix composite coatings using laser cladding technology. The general purpose of producing composite coatings is the improvement of wear resistance of the material surface. In this research, Inconel 625 was used as a matrix material. Nickel-based superalloys are used in several industries for unique applications because they possess a number of beneficial properties including high tensile and fatigue strengths and resistance to high-temperature corrosion in aggressive environments. However, for some applications, this alloy shows insufficient wear resistance of the surface; therefore, for the tests, Inconel 625-based composite coatings were produced with the addition of 10 vol.%, 20 vol.%, and 40 vol.% of titanium carbide (TiC) particles as reinforcement. In general, the addition of TiC particles had a positive effect on the erosion resistance of the surface. The aim of the current research was to test the influence of TiC particle reinforcement of Inconel 625 laser-cladded coatings on corrosion resistance of the surface. For the tests, the laser-cladded composite coatings with uniform phase distribution were produced. The proceeded tests included penetrant tests, macrostructure and microstructure analysis, X-ray diffraction (XRD), and microhardness and corrosion resistance tests. The results showed that using laser cladding, TiC-reinforced Inconel 625 uniform composite coatings may be produced. The addition of TiC particles caused microstructure changes in the Inconel 625 matrix and an increase in hardness. The addition of TiC particles had a negative influence on Inconel 625 corrosion resistance, but with the increased composite coating homogeneity, the corrosion resistance improved.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3