A Properly Chosen Rate of NPK Fertilizers Has a Positive Effect on C Sequestration in Sandy Soils in the Conditions of a Changing Climate

Author:

Šimanský Vladimír1,Jonczak Jerzy2,Horváthová Jarmila3,Juriga Martin1

Affiliation:

1. Institute of Agronomic Sciences, Faculty of Agrobiology and Food Resources , Slovak University of Agriculture , Nitra , Slovak Republic

2. Institute of Agriculture , Warsaw University of Life Sciences , Warsaw , Poland

3. Centre of Languages , Slovak University of Agriculture , Nitra , Slovak Republic

Abstract

Abstract Soil organic carbon (SOC) plays a significant role in climate change. Its content can be modified by soil management practices, however, the effect of mineral fertilization on SOC is not clear. For this reason, a long-term effect of gradually increasing rates of NPK fertilizers on changes in soil organic carbon (SOC) in bulk soil and in water-stable aggregates (WSA) in soils with sandy loam and loamy sand texture at two experimental sites (Skierniewice, Poland, and Dražovce, Slovakia) was quantified. In both sites, soil samples were collected from the following treatments: NF – no fertilization, NPK1 and NPK2 – 1st level and 2nd level of NPK fertilization, respectively. The results showed that 100-year long application of NPK1 increased total carbon (TC) and SOC content by 24%, while NPK2 decreased it by 5% compared to NF at the Skierniewice site. The content of water-stable macroaggregates (WSAma) increased because of NPK application. In NPK1, the content of WSAma was higher and the content of water-stable microaggregates (WSAmi) was lower than in NPK2 or NF. However, as a result of NPK application, the content of agronomically favorable WSAma in size fraction 0.5–3 mm was reduced by 8 and 24% in NPK1 and NPK2, respectively, compared to NF. Overall, SOC in WSAma was lower than in bulk soil. The SOC in WSAma in NF, NPK1 and NPK2 treatments was 6.51, 7.77 and 5.89 g.kg−1, respectively. Similar tendency of SOC in WSAma 0.5–3 mm was observed (NF: 6.12 g.kg−1, NPK1: 7.35 g.kg−1, and NPK2: 6.88 g.kg−1). The SOC in WSAmi in NF, NPK1 and NPK2 was 8.33, 7.39 and 7.24 g.kg−1, respectively. At Dražovce site, TC content decreased significantly due to the graded rates of NPK, not because of SOC mineralization but as a result of carbonate dissolution for a period of 14 years. The carbonate content decreased from 20 g.kg−1 in NF to 6.5 g.kg-1 in NPK1 and 3.0 g.kg-1 in NPK2, while SOC did not change significantly: (NF: 23.8 g.kg−1, NPK1: 25.9 g.kg−1, and NPK2: 23.4 g.kg−1). In NPK1, the WSAma content was reduced significantly when compared to NPK2 and NF treatments. No significant difference was observed between NF and NPK2. On the contrary, the content of WSAma 0.5–3 mm significantly increased when compared to NF and NPK1. No difference was observed between NF and NPK1. Lower SOC content was found in WSA than in the bulk soil. Overall, higher SOC content was observed in WSAma when compared with WSAmi. The application of NPK1 and NPK2 increased SOC in WSAma as well as in WSAma 0.5–3 mm. The effect was more significant in NPK1 than NPK2 treatments when compared to NF.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3