Exploring Biochar with N-Fertilizer Effects on Soil CO2 Emissions and Physical-Chemical Properties as a Climate Change Mitigation Tool

Author:

Molnárová Melinda1,Horák Ján1

Affiliation:

1. Slovak University of Agriculture in Nitra, Faculty of Horticulture and Landscape Engineering , Institute of Landscape Engineering , Nitra , Slovak Republic

Abstract

Abstract The global agriculture industry is facing never before faced issues in the form of soil degradation, water scarcity, rising greenhouse gas emissions, and climate change. Among the possible remedies, applying biochar to the soil has drawn interest as a viable strategy. Although a great deal of literature has been written about the benefits and drawbacks of applying biochar initially, there is still a significant amount of research on the effects of using biochar repeatedly. This study seeks to address this gap by examining the varied effects of both the initial application (at rates of 0 t.ha−1, 10 t.ha−1, and 20 t.ha−1) and the reapplication of biochar (at rates of 0, 10, and 20 t.ha−1), especially when combined with different levels of nitrogen fertilizer (0, 108, and 162 kg.ha−1). The investigation focuses on soil properties and CO2 emissions from Haplic Luvisol in the temperate climate zone (Slovakia). The results showed that biochar generally improved soil properties, such as soil pH (KCl) (p <0.05), shifting it from acidic towards moderately acidic, and generally led to a decrease in ammonium (NH4 +) and nitrate (NO3 -) content. The second level of fertilization, combined with different biochar treatments, yielded the most efficient results in physical properties such as soil temperature, bulk density (BD), and soil water content (SWC) compared to control treatments without biochar. Biochar application contributed to the reduction of both average daily CO2 emissions and cumulative CO2 emissions during the study period (April – October) in 2022 compared to the control without biochar application.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3