Modelling and Analysis of Logistical State Data

Author:

Brandau Annegret1,Tolujevs Jurijs2

Affiliation:

1. 1Otto von Guericke University Magdeburg 2. Universitätsplatz 2, Magdeburg, 39106, Germany

2. 2Transport and Telecommunication Journal Institute Lomonosova str. 1, LV-1019, Riga, Latvia

Abstract

To manage perfectly an efficient and effective supply chain of continuous and undisturbed flow of goods is needed. To achieve this identification, location and sensor technologies must be implemented to generate state data of the logistics objects. However, the amount of information overstrains the operational logistics planner and the information systems have to face enormous data streams. Data mining methods are useful to cope with such big data streams, and they are well developed in the literature. But these methods are not often applied to logistical state data. Without knowledge of the processes, the results of the algorithms cannot be understood. Therefore, the objective of this work is to introduce a general concept to model and to analyse logistical state data, in order to find irregularities and their causes and dependences. This work shows that it is possible to use data mining methods on logistical state data to filter irregularities and their causes.

Publisher

Walter de Gruyter GmbH

Subject

Computer Science Applications,General Engineering

Reference48 articles.

1. Weltwirtschaftliche Entwicklungen zu Beginn des Jahrhunderts InInformationen zur politischen Bildung No Retrieved from http www bpb de izpb weltwirtschaftliche entwicklungen zu beginn des jahrhunderts p all;Kruber,2013

2. Diffusion und Anwendung von Technologien des Ubiquitous Computing zur Selbststeuerung im Supply Chain Event Management In Supply Chain Event Management Konzepte Prozesse Erfolgsfaktoren und Praxisbeispiele Verlag;Teuteberg;Physica,2006

3. Data Mining und Algorithmen intelligenter Datenanalyse Wiesbaden Fachverlage GmbH;Runkler;Methoden,2010

4. Guide to Intelligent How to Intelligently Make Sense of Real Data Verlag Principles of Data Mining Verlag;Berthold;Data Analysis,2010

5. Data Mining und Algorithmen intelligenter Datenanalyse Wiesbaden Fachverlage GmbH;Runkler;Methoden,2010

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3