Gas chromatography-mass spectrometry pilot study to identify volatile organic compound biomarkers of childhood obesity with dyslipidemia in exhaled breath

Author:

Xu Tan1,Wang Jiaxing1,Tan Jiang23,Huang Tao4,Han Guojun5,Li Yizhou2,Yu Haiyi1,Zhou Jiang3,Xu Ming167

Affiliation:

1. Department of Cardiology, Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research , Beijing , China

2. Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University , Chongqing , China

3. Analytical Instrumentation Center, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University , Beijing , China ;

4. Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center , Beijing , China ;

5. Institute of Medical Technology, Peking University Health Science Center , Beijing , China ;

6. State Key Laboratory of Natural and Biomimetic Drugs, Peking University , Beijing , China ;

7. Research Unit of Medinal Science Research Management/Basic and Clinical Research of Metabolic Cardiocascular Diseases, Chinese Academy of Medical Sciences , Beijing , China

Abstract

Abstract Objectives Childhood obesity affects multiple organs in the body and is associated with both significant morbidity and ultimately premature mortality. Childhood obesity, especially dyslipidemia, can lead to early atherosclerosis and premature cardiovascular disease (CVD) in adulthood. The detection of exhaled volatile organic compounds (VOCs) in the breath offers the opportunity for the discovery of novel disease-specific biomarkers. This study aimed to identify VOCs that correlate with childhood obesity accompanied by dyslipidemia. Methods A total of 82 overweight or obese children between the ages of 8 and 12 years were recruited from the exercise on obesity adolescents in Peking (EXCITING) study (NCT04984005). The breath VOCs of the participants were measured by gas chromatography-mass spectrometry (GC-MS). The classification was performed using principal component analysis (PCA) of the relative abundance of VOCs. The difference between the obese and overweight groups with or without dyslipidemia was analyzed. Results Among the 82 children, 25 were overweight, of whom 10 had dyslipidemia. The other 57 children were obese, and 17 of them had dyslipidemia. Obese children with dyslipidemia had higher triglycerides and elevated non–high-density lipoprotein-cholesterol compared to overweight children without dyslipidemia. We confirmed 13 compounds based on database well matches (average score > 80) for mass spectra and refractive index. These 13 VOCs were grouped into three chemical functional groups: saturated hydrocarbons, aromatic hydrocarbons and unsaturated aldehydes. For obese children with dyslipidemia, the PCA scatter plot of the three chemical groups was obviously separated from the other groups. Some of the candidates, including heptadecane, naphthalene, and cis-6-nonnenol, were significantly higher in obese children with dyslipidemia than in overweight groups with or without dyslipidemia. Conclusion A suite of VOCs from three chemical function groups, saturated hydrocarbons, aromatic hydrocarbons, and unsaturated aldehydes, were separated in the obese children with dyslipidemia. Heptadecane, naphthalene, and cis-6-nonenol were significantly elevated in obese children with dyslipidemia. Our findings underscore the potential value of the candidate VOCs for future risk categorization.

Publisher

Walter de Gruyter GmbH

Subject

Internal Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3