Circulating exosome long non-coding RNAs are associated with atrial structural remodeling by increasing systemic inflammation in atrial fibrillation patients

Author:

Yuan Yue1,Han Xuejie1,Zhao Xinbo1,Zhang Haiyu1,Vinograd Asiia12,Bi Xin1,Duan Xiaoxu1,Cao Yukai1,Gao Qiang1,Song Jia3,Sheng Li1ORCID,Li Yue14567ORCID

Affiliation:

1. Department of Cardiology, the First Affiliated Hospital, Harbin Medical University , Harbin , Heilongjiang Province , China

2. Bashkir State Medical University, UFA , Republic Bashkortostan , Russia

3. Department of Medicine, Division of Atherosclerosis and Vascular Medicine, Baylor College of Medicine , Houston , USA

4. NHC Key Laboratory of Cell Transplantation, Harbin Medical University , Harbin , Heilongjiang Province , China

5. Key Laboratory of Hepatosplenic Surgery, Harbin Medical University, Ministry of Education , Harbin , Heilongjiang Province , China

6. Heilongjiang Key Laboratory for Metabolic Disorder & Cancer Related Cardiovascular Diseases , Harbin , Heilongjiang Province , China

7. Key Laboratory of Cardiac Diseases and Heart Failure, Harbin Medical University , Harbin , Heilongjiang Province , China

Abstract

Abstract Background Atrial fibrillation (AF) is the most common cardiac arrhythmia with severe clinical sequelae, but its genetic characteristic implicated in pathogenesis has not been completely clarified. Accumulating evidence has indicated that circulating exosomes and their carried cargoes, such as long non-coding RNAs (lncRNAs), involve in the progress of multiple cardiovascular diseases. However, their potential role as clinical biomarkers in AF diagnosis and prognosis remains unknown. Methods Herein, we conducted the sequence and bioinformatic analysis of circulating exosomes harvested from AF and sinus rhythm patients. Results A total of 53 differentially expressed lncRNAs were identified, and a total of 6 significantly changed lncRNAs (fold change > 2.0), including NR0046235, NR003045, NONHSAT167247.1, NONHSAT202361.1, NONHSAT205820.1 and NONHSAT200958.1, were verified by qRT-PCR in 215 participants. Moreover, these circulating exosome lncRNA levels were different between paroxysmal and persistent AF patients, which were dramatically associated with abnormal hemodynamics and atrial diameter. Furthermore, we observed that the area under ROC curve (AUC) of six lncRNAs combination for diagnosis of persistent AF was 80.34%. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment pathway analysis indicated these exosome lncRNAs mainly concerning response to chemokine-chemokine receptor interaction, which induced activated inflammation and structural remodeling. In addition, increased plasma levels of CXCR3 ligands, including CXCL4, CXCL9, CXCL10 and CXCL11, were accumulated in AF patient tissues. Conclusion Our study provides the transcriptome profile revealing pattern of circulating exosome lncRNAs in atrial structural remodeling, which bring valuable insights into improving prognosis and therapeutic targets for AF.

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3