Slope aspect and altitude effect on selected soil organic matter characteristics in Beskid Mountains forest soils

Author:

Staszel Karolina1,Błońska Ewa1,Lasota Jarosław1

Affiliation:

1. University of Agriculture in Krakow, Faculty of Forestry, Department of Ecology and Silviculture , 29 Listopada 46, 31-425 Kraków , Poland

Abstract

Abstract In the era of dynamic climate change, it is important to have knowledge on the interactions between climatic factors and processes occurring in the soil environment. The present study aimed to determine how slope aspect and altitude above sea level influence carbon and nitrogen accumulation and dehydrogenases activity of forest soils. The study was conducted in the Beskid Żywiecki in the south-facing part of Poland. Soils of the same texture, with similar vegetation species composition, in different altitude variants (600, 800, 1000 and 1200 m above sea level) and different north-facing and south-facing slope aspect were selected for the study. For each height and slope aspect variant, samples were collected from the surface horizons of soils for further analyses. The basic chemical properties and dehydrogenases activity of the soil samples were determined. Carbon and nitrogen stocks in the surface horizons of the soils were calculated. The analyses confirmed the influence of location conditions on the carbon and nitrogen stocks in mountain forest soils. The stock of carbon and nitrogen increased with the height up to 1000 m a.s.l. In the soils at the highest altitude, the reserve of carbon and nitrogen decreased regardless of the slope aspect variant. There were no statistically significant differences in carbon and nitrogen stocks between slope aspect variant. The highest dehydrogenases activity was associated with the organic horizons of the soils at the lowest altitude in height gradient. In our study, higher dehydrogenases activity was observed in the north-facing slope soils, and this finding can be explained by more stable thermal conditions.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3