Affiliation:
1. Balikesir University , Faculty of Engineering, Department of Electrical and Electronics Engineering , , Balikesir , Turkey
Abstract
Abstract
One of the challenges with magnetic fluid hyperthermia (MFH) is the limited control of magnetic nanoparticle (MNP) oscillations. To overcome this problem new approaches such as localization of MNP oscillations are being explored. In this study, we investigated the manipulation of field free region form by dual Halbach array displacements. We used finite element method simulation to examine gradient patterns in the workspace. Then, we created an experiment platform and took point probe measurements. As a result of the research, it was found that the field free region form can be manipulated by parametric distance changes of dual Halbach array. According to the findings, the field free region can expand and its shape can change from a point-like form to an ellipse-like surface by varying the distance between the arrays. The mapping of dual Halbach array generated gradient patterns for focused MFH was investigated for the first time in this study.