Analysing the shielding effectiveness of rectangular enclosure by determining aperture dimensions with particle swarm optimization

Author:

Güler Sunay1

Affiliation:

1. FEV Türkiye , Department of Electronics and Electrification , Istanbul , Türkiye

Abstract

Abstract Electromagnetic shielding enclosure is used to protect electronic circuits against external EMI. Aperture on the enclosure, which is necessary for various reasons such as mounting connector, ventilation attenuates shielding effectiveness (SE) of the enclosure. Enlarging enclosure dimensions makes SE get better. Yet, they canot be designed so large due to weight and dimension considerations for EV. When the dimensions of the shielding enclosure remain fixed and the aperture is to have a particular area, it is essential to optimize aperture dimensions to increase SE. In this paper, an optimization methodology based on PSO is designed to obtain the optimal SE for a particular dimension range. The study also provides a comparative analysis between designed optimization methodology and the one based on genetic algorithm in the literature. Obtained SE results indicate that the optimization methodology establishes a very good agreement with the results in the literature. Moreover, it has faster convergence and higher calculation accuracy than GA and it utilizes a smaller number of parameters thanks to its simplicity. Finally, it is concluded that through designed optimization methodology in this study, SE of the enclosure can be raised by optimizing aperture dimensions when the dimensions of shielding enclosure remain fixed.

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3