Affiliation:
1. Laboratory of Biochemical Genetics, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh-202 002 (U.P.), India
Abstract
Abstract
We have investigated biochemical properties of myofibrillar proteins of the digenetic trematode Isoparorchis hypselobagri, which correlate with its survival in the oxygen-rich swim bladder of its host catfish (Wallago attu). The polypeptide composition of the trematode’s natural actomyosin (NAM) was striated-muscle-like, with the exception that a 98-kD polypeptide corresponding to paramyosin also existed in its sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) profiles. The profiles of immunoprecipitated NAM of the trematode support these inferences. Ca2+-sensitivity of myofibrillar contractility and Mg2+-ATPase activity of I. hypselobagri resembled troponin-linked calcium regulation of the host striated muscle. Myofibrillar permeability to water influx was insensitive to calcium chelation at neutral pH. However, the host swim bladder myofibrils displayed smooth-muscle-like polypeptide composition, pH dependence of contractility, Ca2+-sensitivity, ATPase activities, and inactivation kinetics. We propose 2 survival strategies that I. hypselobagri appears to have co-evolved: (i) fast-muscle-like musculature with exceptionally high contractility or ATPase activity; and (ii) type-II myosin resembling the host muscle in functional plasticity.
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献