Tree-ring widths as an indicator of air pollution stress and climate conditions in different Norway spruce forest stands in the Krkonoše Mts.

Author:

Putalová Tereza1,Vacek Zdeněk1,Vacek Stanislav1,Štefančík Igor2,Bulušek Daniel1,Král Jan1

Affiliation:

1. Czech University of Life Sciences , Prague, Faculty of Forestry and Wood Sciences , Kamýcká 129, CZ – 165 21 Prague 6 – Suchdol, Czech Republic

2. National Forest Centre – Forest Research Institute Zvolen , T. G. Masaryka 2175/22, SK – 960 92 Zvolen , Slovak Republic

Abstract

Abstract The negative effect of air pollution on mountain spruce stands culminated in the 70s – 90s of the 20th century, when an extensive dieback and disturbance of stands occurred in the Krkonoše Mts., the Czech Republic. Dendrochronological analysis was used on ten permanent research plots established in 1976–1980 to document the dynamics of radial increment of Norway spruce (Picea abies [L.] Karst.). The objective was to determine the effect of SO2, NOX and O3 concentrations and precipitation and temperatures on spruce radial growth in climax forests, waterlogged forests and cultivated forests. The results document the strong depression of diameter increment in the period 1979–1991 caused by synergism of climatic extremes and high SO2 pollution in the 80s and 90s of the 20th century. After 2000 climate had prevailing effect on radial growth. Spruce increment was in positive correlation with temperature, particularly with temperature in the growing season and annual temperature of the current year. In general, temperature had a more significant effect on increment than precipitation, mainly in climax and peaty spruce stands. Diameter increment was in significant negative correlation with SO2 and NOX concentrations in all types of stands. Overall, peaty spruce stands were the most vulnerable to air pollution stress. Low radial increments were caused also by climate extremes, historically by strong frosts and winter desiccation in early spring, nowadays in time of climatic changes by extreme drought. Spruce stands have the ability of quickly responding by tree-ring width to both negative and positive impulses related with air pollution and climate.

Publisher

Walter de Gruyter GmbH

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3