Structural optical and magnetic properties of transition metal doped ZnO magnetic nanoparticles synthesized by sol-gel auto-combustion method

Author:

Sarfraz Madiha1,Ahmed Nasar2,Khizar-ul-Haq 12,Shahida Shabnam3,Khan M. A.4

Affiliation:

1. Department of Physics , Mirpur University of Science and Technology (MUST) , Mirpur - 10250 (AJK), Pakistan

2. Department of Physics , University of Azad Jammu and Kashmir Muzaffarabad , AJK 13100 , Pakistan

3. Department of Chemistry , University of the Poonch , Rawalakot , Azad Kashmir, Pakistan

4. Woman University of Azad Jammu and Kashmir , Bagh , Azad Kashmir

Abstract

Abstract Transition metals, such as chromium (Cr) and manganese (Mn) doped zinc oxide (ZnO) magnetic nanoparticles, were synthesized via sole gel auto-combustion method. The prepared magnetic (Zn1−(x+y)MnxCryO, where x, y = 0, 0.02, 0.075) nanoparticles were calcined in an oven at 6000 °C for 2 hours. The morphologies of the nanoparticles were investigated using different techniques. X-ray diffraction (XRD) analysis revealed that the hexagonal wurtzite structure of the synthesized nanoparticles was unaffected by doping concentration. The crystallite size measured by Scherrer formula was in the range of 32 nm to 38 nm at different doping concentrations. Nanosized particles with well-defined boundaries were observed using a field emission scanning electron microscopy (FE-SEM). Fourier transform infrared (FT-IR) spectra showed a wide absorption band around 1589 cm−1 in all the samples, corresponding to the stretching vibration of zinc and oxygen Zn–O bond. A blue shift in optical band gaps from 3.20 eV for ZnO to 3.08 eV for Zn0.85Mn0.075Cr0.075O nanoparticles was observed in diffuse reflectance spectra, which was attributed to the sp-d exchange interactions. The field-dependent magnetization M-H loops were measured using vibrating sample magnetometer (VSM). The VSM results revealed diamagnetic behavior of the ZnO nanoparticles which changed into ferromagnetic, depending on the doping concentration and particle size. The compositions of Zn, Cr, Mn and O in the prepared samples were confirmed by using the energy dispersive X-ray spectroscopy (EDX). Our results provided an interesting route to improve magnetic properties of ZnO nanoparticles, which may get significant attention for the fabrication of magnetic semiconductors.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3