Predicting Days to Respondent Contact in Cross-Sectional Surveys Using a Bayesian Approach

Author:

Coffey Stephanie1,Elliott Michael R.2

Affiliation:

1. 1 U.S. Census Bureau, Research and Methodology , 4600 Silver Hill Road, Suitland, Maryland, 20746 U.S.A .

2. 2 University of Michigan , Department of Biostatistics, School of Public Health, University of Michigan , M4041 SPH II, 1420 Washington Heights, Ann Arbor, Michigan 48109, Michigan, 48105 U.S.A .

Abstract

Abstract Surveys estimate and monitor a variety of data collection parameters, including response propensity, number of contacts, and data collection costs. These parameters can be used as inputs to a responsive/adaptive design or to monitor the progression of a data collection period against predefined expectations. Recently, Bayesian methods have emerged as a method for combining historical information or external data with data from the in-progress data collection period to improve prediction. We develop a Bayesian method for predicting a measure of case-level progress or productivity, the estimated time lag, in days, between first contact attempt and first respondent contact. We compare the quality of predictions from the Bayesian method to predictions generated from more commonly-used predictive methods that leverage data from only historical data collection periods or the in-progress round of data collection. Using prediction error and misclassification as short- or long- day lags, we demonstrate that the Bayesian method results in improved predictions close to the day of the first contact attempt, when these predictions may be most informative for interventions or interviewer feedback. This application adds to evidence that combining historical and current information about data collection, in a Bayesian framework, can improve predictions of data collection parameters.

Publisher

SAGE Publications

Subject

Statistics and Probability

Reference46 articles.

1. Bates, N., J. Dahlhamer, P. Phipps, A, Safir, and L. Tan. 2010. “Assessing Contact History Paradata Quality Across Several Federal Surveys,” In Proceedings of the American Statistical Association 2010 Joint Statistical Meeting, Vancouver, Canada. Available at: http://www.asasrms.org/Proceedings/v2010f.html (accessed July 2017).

2. Biemer, P., P. Chen, and K. Wang. 2013. “Using Level-Of-Effort Paradata in Non-Response Adjustments with Application to Field Surveys.” Journal of the Royal Statistical Society A176: 147–168. DOI: https://doi.org/10.1111/j.1467-985X.2012.01058.x.

3. Biffignandi, S., and J. Bethlehem. 2021. Web Surveys and Other Modes of Data Collection. In Handbook of Web Surveys. DOI: https://doi.org/10.1002/9781119371717.ch6.

4. Calinescu, M., S. Bhulai, and B. Schouten. 2013. “Optimal Resource Allocation in Survey Designs,” European Journal of Operations Research 226: 115–121. DOI: https://doi.org/10.1016/j.ejor.2012.10.046.

5. Census Bureau. 2008. A Compass for Understanding and Using American Community Survey Data. Available at: https://www.census.gov/content/dam/Census/library/publications/2008/acs/ACSGeneralHandbook.pdf (accessed October 2017).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3