Constructing Building Price Index Using Administrative Data

Author:

Higo Masahiro1,Saita Yumi2,Shimizu Chihiro3,Tachi Yuta4

Affiliation:

1. 1 The University of Tokyo . 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033 , Japan .

2. 2 Kwansei Gakuin University , 1-155, Uegahara Ichiban-cho, Nishinomiya, Hyogo, 662-8501 , Japan .

3. 3 Hitotsubashi University , 2-1 Naka, Kunitachi, Tokyo, 186-8601 , Japan .

4. 4 Reitaku University . 2-1-1, Hikarigaoka, Kashiwa-shi, Chiba, 277-8686 , Japan .

Abstract

Abstract Improving the accuracy of deflators is crucial for measuring real GDP and growth rates. However, construction prices are often difficult to measure. This study uses the stratification and hedonic methods to estimate price indices. The estimated indices are based on the actual transaction prices of buildings (contract prices) obtained from the Statistics on Building Starts survey information from the administrative sector in Japan. Compared with the construction cost deflator (CCD), calculated by compounding input costs, the estimated output price indices show higher rates of increase during the economic expansion phase after 2013. This suggests that the profit surge in the construction sector observed in that period is not fully reflected in the CCD. Furthermore, the difference between the two “output-type” indices obtained by stratification and hedonic methods shrinks when the estimation methods are precisely configured.

Publisher

SAGE Publications

Subject

Statistics and Probability

Reference25 articles.

1. Benedetti, I., L. Biggeri, and T. Laureti. 2022. “Sub-National Spatial Price Indexes for Housing: Methodological Issues and Computation for Italy.” Journal of Official Statistics 38(1): 57–82. DOI: http://dx.doi.org/10.2478/JOS-2022-0004.

2. Cabinet Office (Government of Japan). 2022. Explanatory Notes on the Methodology for Estimating National Accounts (Annual Estimates), 2015 Standard Version. Available at: https://www.esri.cao.go.jp/jp/sna/data/reference1/h27benchmark/pdf/kaisetsu_20220726.pdf (accessed December 2022).

3. De Haan, J. 2004. “Direct and indirect time dummy approaches to hedonic price measurement.” Journal of Economic and Social Measurement 29: 427–443. DOI: http://doi.org/10.3233/JEM-2004-0235.

4. Diewert, W.E. 2003. “Hedonic Regressions: A Review of Some Unresolved Issues,” In Proceedings of the Seventh Meeting of the International Working Group on Price Indices: the United Nations Statistical Commission, May 27–29, 2003. Available at: https://econ.sites.olt.ubc.ca/files/2013/06/pdf_paper_erwin-diewert-hedonic-regressions.pdf (accessed December 2022).

5. Diewert, W.E., and C. Shimizu. 2015. “Residential Property Price Indices for Tokyo.” Macroeconomic Dynamics 19: 1659–1714. DOI: https://doi.org/10.1017/S1365100514000042.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3