Application of Sampling Variance Smoothing Methods for Small Area Proportion Estimation

Author:

You Yong1,Hidiroglou Mike1

Affiliation:

1. 1 Statistics Canada , Ottawa , , Canada

Abstract

Abstract Sampling variance smoothing is an important topic in small area estimation. In this article, we propose sampling variance smoothing methods for small area proportion estimation. In particular, we consider the generalized variance function and design effect methods for sampling variance smoothing. We evaluate and compare the smoothed sampling variances and small area estimates based on the smoothed variance estimates through analysis of survey data from Statistics Canada. The results from real data analysis and simulation study indicate that the proposed sampling variance smoothing methods perform very well for small area estimation.

Publisher

SAGE Publications

Subject

Statistics and Probability

Reference34 articles.

1. Beaumont, J.-F., and C. Bocci. 2016. “Small area estimation in the Labour Force Survey.” Paper presented at the Advisory Committee on Statistical Methods, May 2016, Statistics Canada, Ottawa, Canada.

2. Béland, Y. 2002. Canadian Community Health Survey Methodological overview. Health Reports, 13(3): Catalogue 82–003. Statistics Canada. Available at: https://www150.statcan.gc.ca/n1/pub/82-003-x/2001003/article/6099-eng.pdf (accessed March 2023).

3. Bertarelli, G., M.G. Ranalli, F. Bartolucci, M. D’Alò and F. Solari. 2018. “Small area estimation for unemployment using latent Markov models.” Survey Methodology 44: 167 – 192. Available at: https://www150.statcan.gc.ca/n1/pub/12-001-x/2018002/article/54956-eng.htm (accessed March 2023).

4. Bizier, V., Y. You, L. Veilleux, and C. Grondin. 2009. “Model-based Approach to Small Area Estimation of Disability Count and Rate Using Data from the 2006 Participation and Activity Limitation Survey.” In Proceedings of Section on Survey Research Methods, Joint Statistical Meeting 2009. Available at: http://www.asasrms.org/Proceedings/y2009/Files/303608.pdf (accessed March 2023).

5. Dass, S.C., T. Maiti, H. Ren, and S. Sinha. 2012. “Confidence interval estimation of small area parameters shrinking both means and variances.” Survey Methodology 38: 173 – 187. Available at: https://www150.statcan.gc.ca/n1/pub/12-001-x/2012002/article/11756-eng.pdf (accessed March 2023).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3