Small Area Estimates of Poverty Incidence in Costa Rica under a Structure Preserving Estimation (SPREE) Approach

Author:

Arias-Salazar Alejandra1

Affiliation:

1. 1 University of Costa Rica , Ciudad Universitaria Rodrigo Facio, San Pedro, Montes de Oca, San José 11501-2060 , Costa Rica .

Abstract

Abstract Obtaining reliable estimates in small areas is a challenge because of the coverage and periodicity of data collection. Several techniques of small area estimation have been proposed to produce quality measures in small areas, but few of them are focused on updating these estimates. By combining the attributes of the most recent versions of the structure-preserving estimation methods, this article proposes a new alternative to estimate and update cross-classified counts for small domains, when the variable of interest is not available in the census. The proposed methodology is used to obtain and up-date estimates of the incidence of poverty in 81 Costa Rican cantons for six postcensal years (2012–2017). As uncertainty measures, mean squared errors are estimated via parametric bootstrap, and the adequacy of the proposed method is assessed with a design-based simulation.

Publisher

SAGE Publications

Subject

Statistics and Probability

Reference49 articles.

1. Agresti, A., 2002. Categorical data analysis. John Wiley & Sons, Inc.

2. Alkire, S., and J. Foster. 2007. Counting and multidimensional poverty measures. OPHI working article 7. Available at: https://ophi.org.uk/working-paper-number-07/ (accessed June 2021).

3. Berg, E., and W.A. Fuller. 2009. “A SPREE small area procedure for estimating population counts.” In Proceedings of the Statistical Society of Canada. June, Vancouver. Canada. Available at: https://ssc.ca/sites/default/files/survey/documents/SSC2009_EBerg.pdf (accessed November 2023).

4. Bishop, Y.M., S.E. Fienberg, and P.W. Holland. 2007. Discrete multivariate analysis: theory and practice. Springer Science & Business Media.

5. Box, G.E., and D.R. Cox. 1964. “An analysis of transformations.” Journal of the Royal Statistical Society: Series B (Methodological) 26(2): 211–243. DOI: https://doi.org/10.1111/j.2517-6161.1964.tb00553.x.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3