Estimating Intra-Regional Inequality with an Application to German Spatial Planning Regions

Author:

Runge Marina1

Affiliation:

1. 1 Institute of Statistics and Econometrics , Freie Universität Berlin , Garystraße 21, 14195 Berlin , Germany .

Abstract

Abstract Income inequality is a persistent topic of public and political debate. In this context, the focus often shifts from the national level to a more detailed geographical level. In particular, inequality between or within local communities can be assessed. In this article, the estimation of inequality within regions, that is, between households, is considered at a regionally disaggregated level. From a methodological point of view, a small area estimation of the Gini coefficient is carried out using an area-level model linking survey data with related administrative data. Specifically, the Fay-Herriot model is applied using a logit-transformation followed by a bias-corrected back-transformation. The uncertainty of the point estimate is assessed using a parametric bootstrap procedure to estimate the mean squared error. The validity of the methodology is shown in a model-based simulation for the point estimator as well as for the uncertainty measure. The proposed methodology is illustrated by estimating model-based Gini coefficients for spatial planning regions in Germany, using survey data from the Socio-Economic Panel and aggregate data from the 2011 Census. The results show that intra-regional inequality is more diverse than a consideration only between East and West suggests.

Publisher

SAGE Publications

Subject

Statistics and Probability

Reference54 articles.

1. Alfons, A., and M. Templ. 2013. “Estimation of social exclusion indicators from complex surveys: The R package laeken.” Journal of Statistical Software 54: 1–25. DOI: https://doi.org/10.18637/jss.v054.i15.

2. Alfons, A., M. Templ, and P. Filzmoser. 2013. “Robust estimation of economic indicators from survey samples based on pareto tail modeling.” Journal of the Royal Statistical Society: Series C (Applied Statistics) 62: 271–286. DOI: https://doi.org/10.1111/j.1467-9876.2012.01063.x.

3. Benavent, R., and D. Morales. 2016. “Multivariate Fay Herriot models for small area estimation.” Computational Statistics and Data Analysis 94: 372–390. DOI: https://doi.org/10.1016/j.csda.2015.07.013.

4. Braml, M., and G. Felbermayr. 2018. Regionale Ungleichheit in Deutschland und der EU: Was sagen die Daten? ifo Schnelldienst 71: 37–49. Available at: https://www.ifo.de/publikationen/2018/aufsatz-zeitschrift/regionale-ungleichheit-deutschland-und-der-euwas-sagen-die (accessed August 2021).

5. Bundesinstitut für Bau-, Stadt-, und Raumforschung. 2021. Indikatoren und Karten zur Raum- und Stadtentwicklung. Datenlizenz Deutschland – Namensnennung – Version 2.0. Available at: http://www.inkar.de/ (accessed May 2022).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3