Temporally Consistent Present Population from Mobile Network Signaling Data for Official Statistics

Author:

Suarez Castillo Milena1,Sémécurbe Francois1,Ziemlicki Cezary2,Tao Haixuan Xavier1,Seimandi Tom1

Affiliation:

1. 1 INSEE, SSP Lab, 88 avenue Verdier , Montrouge,Île-de-France, 92120 , France .

2. 2 Orange Labs R&D Châtillon , Chatillon,Île-de-France , France .

Abstract

Abstract Mobile network data records are promising for measuring temporal changes in present populations. This promise has been boosted since high-frequency passively-collected signaling data became available. Its temporal event rate is considerably higher than that of Call Detail Records – on which most of the previous literature is based. Yet, we show it remains a challenge to produce statistics consistent over time, robust to changes in the “measuring instruments” and conveying spatial uncertainty to the end user. In this article, we propose a methodology to estimate – consistently over several months – hourly population presence over France based on signaling data spatially merged with fine-grained official population counts. We draw particular attention to consistency at several spatial scales and over time and to spatial mapping reflecting spatial accuracy. We compare the results with external references and discuss the challenges which remain. We argue data fusion approaches between fine-grained official statistics data sets and mobile network data, spatially merged to preserve privacy, are promising for future methodologies.

Publisher

SAGE Publications

Subject

Statistics and Probability

Reference32 articles.

1. Avouac, R., B. Sakarovitch, and Z. Smoreda. 2019. “A Bayesian Approach to Improve the Estimation of Population using Mobile Phone Data.” Research Workshop on Digital Demography in the Era of Big Data, Seville, Spain, 6–7 June 2019. Available at: https://iussp.org/en/digital-demography-era-big-data (accessed March 2023).

2. Batista e Silva, F., S. Freire, M. Schiavina, K. Rosina, M.A. Marìn-Herrera, L. Ziemba, M. Craglia, E. Koomen, and C. Lavalle. 2020. “Uncovering Temporal Changes in Europe’s Population Density Patterns using a Data Fusion Approach.” Nature communications 11(1): 1–11. DOI: https://doi.org/10.1038/s41467-020-18344-5.

3. Beresewicz, M., R. Lehtonen, F. Reis, L. Di Consiglio, and M. Karlberg. 2018. An Overview of Methods for Treating Selectivity in Big Data Sources. Technical report. Eurostat Statistical Working Article. Available at: https://doi.org/10.2785/312232.

4. Blondel, V.D, A. Decuyper, and G. Krings. 2015. “A Survey of Results on Mobile Phone Data Sets Analysis.” EPJ data science 4(1): 10. DOI: https://doi.org/10.1140/epjds/s13688-015-0046-0.

5. Bonnetain, L., A. Furno, N.-E. el Faouzi, M. Fiore, R. Stanica, Z. Smoreda, and C. Ziemlicki. 2021. “TRANSIT: Fine-Grained Human Mobility Trajectory Inference at Scale with Mobile Network Signaling Data.” Transportation Research Part C: Emerging Technologies 130: 103257. DOI: https://doi.org/10.1016/j.trc.2021.103257.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3