A Note on the Optimum Allocation of Resources to Follow up Unit Nonrespondents in Probability Surveys

Author:

Tam Siu-Ming1,Holmberg Anders1,Wang Summer1

Affiliation:

1. 1 Australian Bureau of Statistics , Canberra, Australia. 45, Benjamin Way, Belconnen, ACT 2617 , Australia .

Abstract

Abstract Common practice to address nonresponse in probability surveys in National Statistical Offices is to follow up every non respondent with a view to lifting response rates. As response rate is an insufficient indicator of data quality, it is argued that one should follow up non respondents with a view to reducing the mean squared error (MSE) of the estimator of the variable of interest. In this article, we propose a method to allocate the nonresponse follow-up resources in such a way as to minimise the MSE under a quasi-randomisation framework. An example to illustrate the method using the 2018/19 Rural Environment and Agricultural Commodities Survey from the Australian Bureau of Statistics is provided.

Publisher

SAGE Publications

Subject

Statistics and Probability

Reference35 articles.

1. Australian Bureau of Statistics, 2000. Droughts, fires, cyclones, hailstorms and a pandemic. Available at: https://www.abs.gov.au/articles/droughts-fires-cyclones-hailstorms-and-pandemic-march-quarter-2020#businesses.

2. Beaumont, J.F., 2005. “Calibrated Imputation In Surveys Under A Quasi-Model-Assisted Approach.” Journal of the Royal Statistical Society B67: 445–458. DOI: https://doi.org/10.1111/j.1467-9868.2005.00511.x.

3. Beaumont, J.F., C. Bocci, and D. Haziza. 2014. “An Adaptive Data Collection Procedure for CallPrioritization.” Journal of Official Statistics 30: 607–621. DOI: http://dx.doi.org/10.2478/jos-2014-0040.

4. Bethlehem, J.G. 1998. “Reduction of Nonresponse Bias Through Regression Estimation.” Journal of Official Statistics 3: 251–260.

5. Breiman, L. 2001. “Random Forests.” Machine Learning 45: 5–32. DOI: https://doi.org/10.1023/A:1010933404324.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3