Looking for a New Approach to Measuring the Spatial Concentration of the Human Population

Author:

Benassi Federico1,Mucciardi Massimo2,Pirrotta Giovanni3

Affiliation:

1. 1 University of Naples Federico II , Deparment of Political Sciences , Via L. Rodinò 22 , , Naples , Italy .

2. 2 University of Messina , Department of Cognitive Science, Education and Cultural Studies , Messina , Italy .

3. 3 University of Messina, IT Staff , Messina , Italy .

Abstract

Abstract In the article a new approach for measuring the spatial concentration of human population is presented and tested. The new procedure is based on the concept of concentration introduced by Gini and, at the same time, on its spatial extension (i.e., taking into account the concept of spatial autocorrelation, polarization). The proposed indicator, the Spatial Gini Index, is then computed by using two different kind of territorial partitioning methods: MaxMin (MM) and the Constant Step (CS) distance. In this framework an ad hoc extension of the Rey and Smith decomposition method is then introduced. We apply this new approach to the Italian and foreign population resident in almost 7,900 statistical units (Italian municipalities) in 2002, 2010 and 2018. All elaborations are based on a new ad hoc library developed and implemented in Python.

Publisher

SAGE Publications

Subject

Statistics and Probability

Reference48 articles.

1. Alleva, G. 1987. “Autocorrelazione spaziale nel caso di contiguità di ordine superiore al primo.” In Proceedings of the Italian Statistical Society Conference “Informazione ed analisi statistica per aree regionali e sub regionali”, Galeno Editrice, Perugia, Italia: 1–10.

2. Anselin, L. 1999. “The Future of Spatial Analysis in the Social Sciences.” Geographic Information Sciences 5(2): 67–76. DOI: https://doi.org/10.1080/10824009909480516.

3. Arbia, G. 2001. “The role of spatial effects in the empirical analysis of regional concentration.” Journal of Geographical Systems 3(3): 271–281. DOI: https://doi.org/10.1007/PL00011480.

4. Arbia, G., R. Benedetti, and G. Espa. 1996. “Effect of MAUP on image classification.” Geographical System 3: 123–141.

5. Arbia, G., and G. Piras. 2009. “A new class of spatial concentration measures.” Computational Statistics and Data Analysis 53(21): 4471–4481. DOI: https://doi.org/10.1016/j.csda.2009.07.003.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3