Research Progress on Calcium Ion in Gametophytic Self-Incompatibility

Author:

Guo Yanling1,Qu Haiyong2

Affiliation:

1. School of Ecology, Resources and Environment , Dezhon University , , Dezhon City , China

2. College of Horticulture , Qingdao Agricultural University , No. 700 Changcheng Road, Chengyang , Qingdao City , , Shandong Province , China

Abstract

Abstract Calcium ions are involved in plant self-incompatibility response as important signaling substances in cells. In the sporophytic self-incompatibility response, Ca2+ enters the stigma papilla cells and plays a key role in inhibiting incompatible pollen tube growth. In the gametophytic self-incompatibility reaction of Papaveraceae, the female determinants in the style (PrsS) and the male determinants in the pollen (PrpS) recognize each other, promote extracellular Ca2+ influx into the incompatible pollen tube, destroy the calcium ion gradient at the tip of the pollen tube, and inhibit the pollen tube growth. In the S-RNase-based Rosaceae game-tophytic self-incompatibility response, it is still unclear how the S-RNase interacts with the male determinant and how the S-RNase specifically degrades the RNA in the pollen tube. Therefore, we reviewed the research progress on the role of Ca2+ in self-incompatibility and, based on our research results, proposed a role model of Ca2+ as a signal substance in the gametophyte self-incompatibility response in Rosaceae.

Publisher

Walter de Gruyter GmbH

Subject

Horticulture,Plant Science,Soil Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3