WO3 as Additive for Efficient Photocatalyst Binary System TiO2/WO3

Author:

Knoks A.1,Kleperis J.1,Bajars G.1,Grinberga L.1,Bogdanova O.1

Affiliation:

1. Institute of Solid State Physics , University of Latvia , 8 Kengaraga Str., Riga, LV-1063 , Latvia

Abstract

Abstract Two different methods of synthesis of TiO2/WO3 heterostructures were carried out with the aim to increase photocatalytic activity. In this study, anodic TiO2 nanotube films were synthesized by electrochemical anodization of titanium foil. WO3 particles were applied to anodic Ti/TiO2 samples in two different ways – by electrophoretic deposition (EPD) and insertion during the anodization process. Structural and photocatalytic properties were compared between pristine TiO2 and TiO2 with incorporated WO3 particles. Raman mapping was used to character-ise the uniformity of EPD WO3 coating and to determine the structural composition. The study showed that deposition of WO3 onto TiO2 nanotube layer lowered the band gap of the binary system compared to pristine TiO2 and WO3 influence on photo-electrochemical properties of titania. The addition of WO3 increased charge carrier dynamics but did not increase the measured photo-current response. As the WO3 undergoes a phase transition from monoclinic to orthorhombic at approximately 320 ℃ proper sequence WO3 deposition could be beneficial. It was observed that secondary heat treatment of WO3 lowers the photocurrent.

Publisher

Walter de Gruyter GmbH

Subject

Psychiatry and Mental health,Neuropsychology and Physiological Psychology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3