Building Ventilation Optimization Through Occupant-Centered Computer Vision Analysis

Author:

Telicko J.1,Bolotin K.1

Affiliation:

1. 1 Institute of Numerical Modelling , University of Latvia , 3 Jelgavas Str., LV-1004 , Latvia

Abstract

Abstract Buildings consume about 40 % of all energy. Ventilation plays a significant role in both the energy consumption of buildings and the comfort of occupants. To achieve energy efficiency and comfort, smarter ventilation control algorithms can be employed, such as those with feedback based on CO2 levels. Furthermore, by knowing the current number of people in a space, ventilation can theoretically be adjusted to maintain a constant CO2 level without wasting energy when people are not present. An additional benefit of such control could arise due to occupants’ habits. For example, if a person senses elevated CO2 levels, even if the ventilation system has started operating more intense, they might choose to open a window, potentially compromising energy efficiency. Therefore, if the control algorithm were to maintain a constant CO2 level, occupants may be less likely to open windows. In our work, we explore a model in combination with a custom monitoring system based on computer vision to implement such control. The monitoring system combines outside and inside CO2 sensors with precise people counting based on computer vision to provide data to the model. The model relies on the mass balance equation for CO2 and considers the historical data of the number of occupants and their activities to estimate the overall CO2 generation in indoor spaces. The results suggest that the model can effectively forecast CO2 dynamics with an absolute deviation of 40 ppm. However, it was observed that the analysis of the actual air exchange level could be compromised by several factors.

Publisher

Walter de Gruyter GmbH

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3