Affiliation:
1. Department of Mathematics, Faculty of Sciences , Ibn Tofail University , Morocco
Abstract
Abstract
Let (G,+) be a locally compact abelian Hausdorff group, 𝓀 is a finite automorphism group of G, κ = card𝒦 and let µ be a regular compactly supported complex-valued Borel measure on G such that
μ
(
G
)
=
1
κ
$\mu ({\rm{G}}) = {1 \over \kappa }$
. We find the continuous solutions f, g : G → ℂ of the functional equation
∑
k
∈
𝒦
∑
λ
∈
𝒦
∫
G
f
(
x
+
k
⋅
y
+
λ
⋅
s
)
d
μ
(
s
)
=
g
(
y
)
+
κ
f
(
x
)
,
x
,
y
∈
G
,
$$\sum\limits_{k \in {\cal K}} {\sum\limits_{\lambda \in {\cal K}} {\int_{\rm{G}} {{\rm{f}}({\rm{x}} + {\rm{k}} \cdot {\rm{y}} + } \lambda \cdot {\rm{s}}){\rm{d}}\mu ({\rm{s}}) = {\rm{g}}({\rm{y}}) + \kappa {\rm{f}}({\rm{x}}),\,{\rm{x}},{\rm{y}} \in {\rm{G}},} } $$
in terms of k-additive mappings. This equations provides a common generalization of many functional equations (quadratic, Jensen’s, Cauchy equations).
Reference10 articles.
1. [1] S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, New Jersey, London, Singapore, Hong Kong, (2002).10.1142/4875
2. [2] B. Fadli, D. Zeglami, S. Kabbaj, On Gajda’s type quadratic equation on locally compact abelian group, indagationes. Math. 26 (4) (2015), 660–668.10.1016/j.indag.2015.05.001
3. [3] Ż. Fechner, L. Székelyhidi, A generalization of Gajda’s equation on commutative topological groups (9 Mar 2014), arXiv:1403.2052[math.FA].
4. [4] E. Hewitt, K. A. Ross, Abstract harmonic analysis. Vol. I: Structure of topological groups. Integration theory. Group representations, Die Grundlehren der Mathematischen Wissenschaften, Band 115. Springer-Verlag, Berlin-Gottingen-Heidelberg, 1963.
5. [5] P. Kannappan, Functional Equations and Inequalities with Applications, in: Springer Monographs in Mathematics, Springer, New York, 2009.10.1007/978-0-387-89492-8
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An integral functional equation on abelian semigroups;Publications de l'Institut Math?matique (Belgrade);2022