Affiliation:
1. Department of Mathematics, Faculty of Mathematics and Computer Science, Babeş-Bolyai University, Cluj-Napoca, Romania
2. Department of Mathematics, Faculty of Arts and Science, Bursa Uludag University, Bursa, Turkey
Abstract
Abstract
In this paper, we define a class of analytic functions, ℱ(ℋ, α, δ, µ), satisfying the following condition
\left( {\alpha {{\left[ {{{{\rm{zf'}}({\rm{z}})} \over {{\rm{f}}(z)}}} \right]}^\delta } + (1 - \alpha ){{\left[ {{{{\rm{zf'}}\left( {\rm{z}} \right)} \over {{\rm{f}}(z)}}} \right]}^\mu }{{\left[ {1 + {{{\rm{zf''}}({\rm{z}})} \over {{\rm{f'}}({\rm{z}})}}} \right]}^{1 - \mu }}} \right)\,\, \prec \mathcal{H}({\rm{z}},{\rm{t}}),
where α ∈ [0, 1], δ ∈ [1, 2] and µ ∈ [0, 1].
We give coefficient estimates and Fekete-Szegö inequality for this class.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献