Affiliation:
1. Technische Universität Wien , Wien , Austria
Abstract
Abstract
Let dN
= NDN
(ω) be the discrepancy of the van der Corput sequence in base 2. We improve on the known bounds for the number of indices N such that dN ≤ log N/100. Moreover, we show that the summatory function of dN
satisfies an exact formula involving a 1-periodic, continuous function. Finally, we give a new proof of the fact that dN
is invariant under digit reversal in base 2.
Reference25 articles.
1. [1] ALLOUCHE, J.-P.—SHALLIT, J.: The ring of k-regular sequences, Theoret. Comput. Sci. 98 (1992), no. 2, 163–197.
2. [2] BECK, J.: Probabilistic Diophantine Approximation. Randomness in lattice point counting. (Ohkubo, Yukio ed.), Springer Monographs in Mathematics, Springer, Cham, 2014.10.1007/978-3-319-10741-7
3. [3] BÉJIAN, R.—FAURE, H.: Discrépance de la suite de Van der Corput, In: Séminaire Delange-Pisot-Poitou, 19e année: 1977/78, Théorie des Nombres, Fasc. 1, Exp. no. 13, (1978), Secrétariat Math., Paris, 14 pp.
4. [4] COONS, M.: Proof of Northshield’s conjecture concerning an analogue of Stern’s sequence for ℤ[√2], (2017). Preprint, http://arxiv.org/abs/1709.01987.
5. [5] COONS, M.—SPIEGELHOFER, L.: The maximal order of hyper-(b-ary)-expansions, Electron. J. Combin. 24 (2017). Paper 1.15.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A lower bound for Cusick’s conjecture on the digits of n + t;Mathematical Proceedings of the Cambridge Philosophical Society;2021-02-24