The role of edaphic, vegetational and spatial factors in structuring soil animal communities in a floodplain forest of the Dnipro river

Author:

Zhukov Oleksandr V.1,Kunah Olga M.1,Dubinina Yuliya Y.1,Novikova Viktoriya O.1

Affiliation:

1. Department of Zoology and Ecology, Faculty of Biology and Ecology , Oles Honchar Dnipro National University , Gagarin Ave. 72, Dnipro , 49010 , Ukraine

Abstract

Abstract This paper examines the role of ecological factors, derived from principal component analysis performed on edaphic and vegetational dataset as well as spatial variables, in structuring the soil macrofauna community of the Dnipro floodplain within the ‘Dnipro-Orilsky’ Nature Reserve (Ukraine). The soil macrofauna was defined as invertebrates visible to the naked eye (macroscopic organisms). The test points formed a regular grid with a mesh size of 3 m with 7 × 15 dimensions. Thus, the total test point number was 105. At each point, soil-zoological samples of 0.25 × 0.25 m were taken for quantifying the soil macrofauna. The spatial structure was modeled by a set of independent spatial patterns obtained by means of principal coordinates of neighbor matrices analysis (PCNM-variables). Spatial PCNM-variables explain significantly more variations of the community (19.9%) than edaphic factors (4.1%) and vegetation factors (3.2%). Spatial and combined environmental and spatial effects were divided into three components: broad-scale component was characterized by periodicity of spatial variation with a wavelength of 24.0–44.5 m, medium-scale – 11.1–20 m, fine-scale – 6.6–11.0 m. For a broad-scale component, environmental factors of a vegetational nature are more important, for medium-scale, edaphic factors are more important, for fine-scale, both vegetation and edaphic are important. For litter-dwelling animals, the most characteristic spatial patterns are on the broad and medium-scale levels. For endogeic and anecic animals, the most significant variability is on the fine-scale level.

Publisher

Walter de Gruyter GmbH

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3