Temporal pattern prevails over spatial variability in phytoplankton communities from a subtropical water supply reservoir

Author:

Lv Hong12,Yang Jun1,Liu Lemian1

Affiliation:

1. Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences , Xiamen, 361021, P. R. China

2. University of Chinese Academy of Sciences , Beijing, 100049, P. R. China

Abstract

Abstract Phytoplankton species are dominant components in reservoir ecosystems, yet little is known about their variability and dynamics, especially along the depth continuum. This study examined vertical and horizontal differences in phytoplankton communities in a typical subtropical deep reservoir (i.e. Dongzhen Reservoir) from 2011 to 2012. Phytoplankton communities separated into four groups based on the biomass data, indicating that temporal differences in the community structure were greater than spatial differences. Autumn communities had the highest diversity measured by the Shannon-Wiener index (2.47±0.07), while summer communities had the lowest diversity (0.46±0.09). Both winter and spring communities were dominated by diatoms (90.4±1.7%), while cyanobacteria dominated in summer communities during our sampling period. In spring and summer, however, the three surface communities characterized by high biomass were most similar to each other, indicating that vertical variation was significantly higher than horizontal differences. Furthermore, Cylindrospermopsis raciborskii accounted for over 96% of the total phytoplankton biomass in the summer surface water. The redundancy analysis (RDA) illustrated that the temporal factor (summer), the spatial factor (depth), and nutrients (nitrite and nitrate nitrogen, ammonium nitrogen, phosphate phosphorus) were significant variables affecting the dynamics of phytoplankton communities. High temperature with stable thermal stratification might have been the cause of C. raciborskii dominance in Dongzhen Reservoir in summer. Regular and long-term monitoring of dominant species is urgently needed for water quality protection and sustainable reservoir management. Copyright© of Dept. of Oceanography and Geography, University of Gdańsk, Poland

Publisher

Walter de Gruyter GmbH

Subject

Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3