Genotoxicity of cisplatin and carboplatin in cultured human lymphocytes: a comparative study

Author:

Azab Belal1,Alassaf Anood1,Abu-Humdan Abdulrahman1,Dardas Zain2,Almousa Hashem3,Alsalem Mohammad1,Khabour Omar2,Hammad Hana4,Saleh Tareq5,Awidi Abdalla2

Affiliation:

1. School of Medicine , The University of Jordan , Amman , Jordan

2. Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences , Jordan University of Science and Technology , Irbid , Jordan

3. Department of Biology , School of Science , Concordia University , Montreal , Canada

4. Department of Biology , School of Science , University of Jordan , Amman , Jordan

5. Department of Pharmacology and Toxicology , School of Medicine , Virginia Commonwealth University , Richmond , Virginia, United States

Abstract

Abstract Cisplatin and carboplatin are integral parts of many antineoplastic management regimens. Both platinum analogues are potent DNA alkylating agents that robustly induce genomic instability and promote apoptosis in tumor cells. Although the mechanism of action of both drugs is similar, cisplatin appears to be more cytotoxic. In this study, the genotoxic potential of cisplatin and carboplatin was compared using chromosomal aberrations (CAs) and sister-chromatid exchange (SCE) assays in cultured human lymphocytes. Results showed that cisplatin and carboplatin induced a significant increase in CAs and SCEs compared to the control group (p<0.01). Levels of induced CAs were similar in both drugs; however, the magnitude of SCEs induced by cisplatin was significantly higher than that induced by carboplatin (p<0.01). With respect to the mitotic and proliferative indices, both cisplatin and carboplatin significantly decreased mitotic index (p<0.01) without affecting the proliferative index (p>0.05). In conclusion, cisplatin was found to be more genotoxic than carboplatin in the SCE assay in cultured human lymphocytes, and that might explain the higher cytotoxicity of cisplatin.

Publisher

Walter de Gruyter GmbH

Subject

Health, Toxicology and Mutagenesis,Pharmacology,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3