Estimating Literacy Levels at a Detailed Regional Level: an Application Using Dutch Data

Author:

Bijlsma Ineke1,van den Brakel Jan1,van der Velden Rolf1,Allen Jim1

Affiliation:

1. Maastricht University , ROA, P.O. Box 616, 6200 MD Maastricht , The Netherlands .

Abstract

Abstract Policy measures to combat low literacy are often targeted at municipalities or regions with low levels of literacy. However, current surveys on literacy do not contain enough observations at this level to allow for reliable estimates when using only direct estimation techniques. To provide more reliable results at a detailed regional level, alternative methods must be used. The aim of this article is to obtain literacy estimates at the municipality level using model-based small area estimation techniques in a hierarchical Bayesian framework. To do so, we link Dutch Labour Force Survey data to the most recent literacy survey available, that of the Programme for the International Assessment of Adult Competencies (PIAAC). We estimate the average literacy score, as well as the percentage of people with a low literacy level. Variance estimators for our small area predictions explicitly account for the imputation uncertainty in the PIAAC estimates. The proposed estimation method improves the precision of the area estimates, making it possible to break down the national figures by municipality.

Publisher

Walter de Gruyter GmbH

Reference45 articles.

1. Arima, S., W.R. Bell, G.S. Datta, C. Franco, and B. Liseo. 2017. “Multivariate Fay-Herriot Bayesian estimation of small area means under functional measurement error.” Journal of the Royal Statistical Society, Series A 180: 1191–1209 DOI: https://doi.org/10.1111/rssa.12321.

2. Battese, G.E., R.M. Harter, and W.A. Fuller. 1988. “An Error-Components Model for Prediction of County Crop Areas Using Survey and Satellite Data.” Journal of the American Statistical Association 401: 28 – 36. DOI: https://doi.org/10.1080/01621459.1988.10478561.

3. Boonstra, H.J. 2015. Package ‘hbsae’ (version 1.0). Available at: https://cran.r-project.org/web/packages/hbsae/hbsae.pdf (accessed December 2015).

4. Boonstra, H.J., J.A. van den Brakel, B. Buelens, S. Krieg, and M. Smeets. 2008. “Towards small area estimation at Statistics Netherlands.” METRON International Journal of Statistics LXVI: 21–49. Available at: https://EconPapers.repec.org/RePEc:mtn:ancoec:080102 (accessed April 2020).

5. Buisman, M., J. Allen, D. Fouarge, W. Houtkoop, and R. van der Velden. 2013. PIAAC: Kernvaardigheden voor werk en leven. Resultaten van de Nederlandse survey 2012, Den Bosch/Maastricht: ECBO/ROA.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3