Affiliation:
1. Maastricht University , ROA, P.O. Box 616, 6200 MD Maastricht , The Netherlands .
Abstract
Abstract
Policy measures to combat low literacy are often targeted at municipalities or regions with low levels of literacy. However, current surveys on literacy do not contain enough observations at this level to allow for reliable estimates when using only direct estimation techniques. To provide more reliable results at a detailed regional level, alternative methods must be used.
The aim of this article is to obtain literacy estimates at the municipality level using model-based small area estimation techniques in a hierarchical Bayesian framework. To do so, we link Dutch Labour Force Survey data to the most recent literacy survey available, that of the Programme for the International Assessment of Adult Competencies (PIAAC). We estimate the average literacy score, as well as the percentage of people with a low literacy level. Variance estimators for our small area predictions explicitly account for the imputation uncertainty in the PIAAC estimates. The proposed estimation method improves the precision of the area estimates, making it possible to break down the national figures by municipality.
Reference45 articles.
1. Arima, S., W.R. Bell, G.S. Datta, C. Franco, and B. Liseo. 2017. “Multivariate Fay-Herriot Bayesian estimation of small area means under functional measurement error.” Journal of the Royal Statistical Society, Series A 180: 1191–1209 DOI: https://doi.org/10.1111/rssa.12321.
2. Battese, G.E., R.M. Harter, and W.A. Fuller. 1988. “An Error-Components Model for Prediction of County Crop Areas Using Survey and Satellite Data.” Journal of the American Statistical Association 401: 28 – 36. DOI: https://doi.org/10.1080/01621459.1988.10478561.
3. Boonstra, H.J. 2015. Package ‘hbsae’ (version 1.0). Available at: https://cran.r-project.org/web/packages/hbsae/hbsae.pdf (accessed December 2015).
4. Boonstra, H.J., J.A. van den Brakel, B. Buelens, S. Krieg, and M. Smeets. 2008. “Towards small area estimation at Statistics Netherlands.” METRON International Journal of Statistics LXVI: 21–49. Available at: https://EconPapers.repec.org/RePEc:mtn:ancoec:080102 (accessed April 2020).
5. Buisman, M., J. Allen, D. Fouarge, W. Houtkoop, and R. van der Velden. 2013. PIAAC: Kernvaardigheden voor werk en leven. Resultaten van de Nederlandse survey 2012, Den Bosch/Maastricht: ECBO/ROA.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献