Proxy Pattern-Mixture Analysis for a Binary Variable Subject to Nonresponse

Author:

Andridge Rebecca R.1,Little Roderick J.A.2

Affiliation:

1. The Ohio State University College of Public Health Division of Biostatistics , 242 Cunz Hall, 1841 Neil Ave. , Columbus , OH 43210, U.S.A .

2. University of Michigan , Department of Biostatistics , M4071 SPH II, 1415 Washington Heights, Ann Arbor, MI 48109, U.S.A .

Abstract

Abstract Given increasing survey nonresponse, good measures of the potential impact of nonresponse on survey estimates are particularly important. Existing measures, such as the R-indicator, make the strong assumption that missingness is missing at random, meaning that it depends only on variables that are observed for respondents and nonrespondents. We consider assessment of the impact of nonresponse for a binary survey variable Y subject to nonresponse when missingness may be not at random, meaning that missingness may depend on Y itself. Our work is motivated by missing categorical income data in the 2015 Ohio Medicaid Assessment Survey (OMAS), where whether or not income is missing may be related to the income value itself, with low-income earners more reluctant to respond. We assume there is a set of covariates observed for nonrespondents and respondents, which for the item nonresponse (as in OMAS) is often a rich set of variables, but which may be potentially limited in cases of unit nonresponse. To reduce dimensionality and for simplicity we reduce these available covariates to a continuous proxy variable X, available for both respondents and nonrespondents, that has the highest correlation with Y, estimated from a probit regression analysis of respondent data. We extend the previously proposed proxy-pattern mixture (PPM) analysis for continuous outcomes to the binary outcome using a latent variable approach for modeling the joint distribution of Y and X. Our method does not assume data are missing at random but includes it as a special case, thus creating a convenient framework for sensitivity analyses. Maximum likelihood, Bayesian, and multiple imputation versions of PPM analysis are described, and robustness of these methods to model assumptions is discussed. Properties are demonstrated through simulation and with the 2015 OMAS data.

Publisher

Walter de Gruyter GmbH

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Using proxy pattern-mixture models to explain bias in estimates of COVID-19 vaccine uptake from two large surveys;Journal of the Royal Statistical Society Series A: Statistics in Society;2024-01-24

2. Evaluating Pre-election Polling Estimates Using a New Measure of Non-ignorable Selection Bias;Public Opinion Quarterly;2023-06-08

3. A Case Study of Nonresponse Bias Analysis in Educational Assessment Surveys;Journal of Educational and Behavioral Statistics;2022-12-15

4. Multiple imputation of ordinal missing not at random data;AStA Advances in Statistical Analysis;2022-08-22

5. A Simulation Study of Diagnostics for Selection Bias;Journal of Official Statistics;2021-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3