Affiliation:
1. Department of Mathematics and Statistics , San Diego State University , San Diego , CA 92182-7720. USA .
Abstract
Abstract
This article discusses use of the composite estimator with the optimal weight to reduce the variance (or the mean-squared-error, MSE) of the ratio estimator. To study the practical usefulness of the proposed composite estimator, a Monte Carlo simulation is performed comparing the bias and MSE of composite estimators (with estimated optimal weight and with known optimal weight) with those of the simple expansion and the ratio estimators. Two examples, one regarding the estimation of dead fir trees via an aerial photo and the other regarding the estimation of the average sugarcane acres per county, are included to illustrate the use of the composite estimator developed here.
Reference16 articles.
1. Casella, G. and R.L. Berger. 1990. Statistical Inference. Belmont, CA: Duxbury.
2. Cochran, W.G. 1977. Sampling Techniques (3rd ed.). New York: Wiley.
3. Fleiss, J.L., B. Levin, and M.C. Paik. 2003. Statistical Methods for Rates and Proportions (3rd ed.). New York: Wiley. DOI: https://doi.org/10.1002/0471445428.
4. Govindarajulu, Z. 1999. Elements of Sampling Theory and Methods. Upper Saddle River, NJ: Prentice Hall.
5. Lee, S.E., P.R. Lee, and K-II. Shin. 2016. “A Composite Estimator for Stratified Two-Stage Cluster Sampling.” Communications for Statistical Applications and Methods 23: 47–55. DOI: https://doi.org/10.5351/CSAM.2016.23.1.047.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献