A feature selection strategy using Markov clustering, for the optimization of brain tumor segmentation from MRI data

Author:

Pisak-Lukáts Ioan-Marius1ORCID,Kovács Levente2ORCID,László Szilágyi3ORCID

Affiliation:

1. Sapientia Hungarian University of Transylvania , Cluj-Napoca, Romania ; Óbuda University , Budapest , Hungary Doctoral School of Applied Mathematics and Applied Informatics

2. Óbuda University , Budapest , Hungary , University Research, Innovation and Service Center

3. Computational Intelligence Research Group, Sapientia Hungarian University of Transylvania , Cluj-Napoca , Romania Dept. of Electrical Engineering , Târgu Mureş Óbuda University , Budapest , Hungary University Research, Innovation and Service Center

Abstract

Abstract The automatic segmentation of medical images stands at the basis of modern medical diagnosis, therapy planning and follow-up studies after interventions. The accuracy of the segmentation is a key element in assisting the work of the physician, but the efficiency of the process is also relevant. This paper introduces a feature selection strategy that attempts to define reduced feature sets for ensemble learning methods employed in brain tumor segmentation based on MRI data such a way that the segmentation outcome hardly suffers any damage. Initially, the full set of observed and generated features are deployed in ensemble training and prediction on testing data, which provide us information on all couples of features from the full feature set. The extracted pairwise data is fed to a Markov clustering (MCL) algorithm, which uses a graph structure to characterize the relation between features. MCL produces connected subgraphs that are totally separated from each other. The largest such subgraph defines the group of features which are selected for evaluation. The proposed technique is evaluated using the high-grade and low-grade tumor records of the training dataset of the BraTS 2019 challenge, in an ensemble learning framework relying on binary decision trees. The proposed method can reduce the set of features to 30%ofits initial size without losing anything in terms of segmentation accuracy, significantly contributing to the efficiency of the segmentation process. A detailed comparison of the full set of 104 features and the reduced set of 41 features is provided, with special attention to highly discriminative and redundant features within the MRI data.

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Brain Tumor Segmentation from Multi-Spectral MRI Records Using a U-net Cascade Architecture;2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC);2023-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3