Word pattern prediction using Big Data frameworks

Author:

Szabari Bence1,Kiss Attila2

Affiliation:

1. Eötvös Loránd University Budapest , Hungary

2. J. Selye University Komárno , Slovakia

Abstract

Abstract Using software applications or services, which provide word or even word pattern recommendation service has become part of our lives. Those services appear in many form in our daily basis, just think of our smartphones keyboard, or Google search suggestions and this list can be continued. With the help of these tools, we can not only find the suitable word that fits into our sentence, but we can also express ourselves in a much more nuanced, diverse way. To achieve this kind of recommendation service, we use an algorithm which is capable to recommend word by word pattern queries. Word pattern queries, can be expressed as a combination of words, part-of-speech (POS) tags and wild card words. Since there are a lot of possible patterns and sentences, we use Big Data frameworks to handle this large amount of data. In this paper, we compared two popular framework Hadoop and Spark with the proposed algorithm and recommend some enhancement to gain faster word pattern generation.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3