Enhancеd Analysis Approach to Detect Phishing Attacks During COVID-19 Crisis

Author:

Jafar Mousa Tayseer1,Al-Fawa’reh Mohammad2,Barhoush Malek2,Alshira’H Mohammad H.3

Affiliation:

1. Philadelphia University , Amman , Jordan

2. Yarmouk University , Irbid , Jordan

3. Al al-Bayt University , Mafraq , Jordan

Abstract

Abstract Public health responses to the COVID-19 pandemic since March 2020 have led to lockdowns and social distancing in most countries around the world, with a shift from the traditional work environment to virtual one. Employees have been encouraged to work from home where possible to slow down the viral infection. The massive increase in the volume of professional activities executed online has posed a new context for cybercrime, with the increase in the number of emails and phishing websites. Phishing attacks have been broadened and extended through years of pandemics COVID-19. This paper presents a novel approach for detecting phishing Uniform Resource Locators (URLs) applying the Gated Recurrent Unit (GRU), a fast and highly accurate phishing classifier system. Comparative analysis of the GRU classification system indicates better accuracy (98.30%) than other classifier systems.

Publisher

Walter de Gruyter GmbH

Subject

General Computer Science

Reference41 articles.

1. 1. Phishing|General Phishing Information and Prevention Tips (Accessed 18 February 2022). https://www.phishing.org/

2. 2. Internet-Statistics (Online). https://www.broadbandsearch.net/blog/internet-statistics

3. 3. Whitman, M. E., H. J. Mattord. Principles of Information Security. Cengage Learning, 2011.

4. 4. Trautman, L. J., M. Hussein, E. U. Opara, M. J. Molesky, S. Rahman. Posted: No Phishing. – In: Emory Corp. Gov. Account. Rev., 2020.

5. 5. Alqurashi, R. K., M. A. AlZain, B. Soh, M. Masud, J. Al-Amri. Cyber Attacks and Impacts: A Case Study in Saudi Arabia. – Int. J., Vol. 9, 2020, No 1.10.30534/ijatcse/2020/33912020

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Systematic Review on Deep-Learning-Based Phishing Email Detection;Electronics;2023-11-05

2. Bibliometrics Study of Organizational Cybersecurity;Emerging Technologies and Digital Transformation in the Manufacturing Industry;2023-09-07

3. Spear Watch: A Thorough Examination to Identify Spear Phishing Attacks;International Journal of Innovative Technology and Exploring Engineering;2023-07-30

4. Geo-spatial crime density attribution using optimized machine learning algorithms;International Journal of Information Technology;2023-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3