A Multi-Agent Reinforcement Learning-Based Optimized Routing for QoS in IoT

Author:

Jermin Jeaunita T. C.1,Sarasvathi V.1

Affiliation:

1. PESIT Bangalore South Campus, Bangalore, India and affiliated to Visvesvaraya Technological University , Belagavi , Karnataka , India

Abstract

Abstract The Routing Protocol for Low power and lossy networks (RPL) is used as a routing protocol in IoT applications. In an endeavor to bring out an optimized approach for providing Quality of Service (QoS) routing for heavy volume IoT data transmissions this paper proposes a machine learning-based routing algorithm with a multi-agent environment. The overall routing process is divided into two phases: route discovery phase and route maintenance phase. The route discovery or path finding phase is performed using rank calculation and Q-routing. Q-routing is performed with Q-Learning reinforcement machine learning approach, for selecting the next hop node. The proposed routing protocol first creates a Destination Oriented Directed Acyclic Graph (DODAG) using Q-Learning. The second phase is route maintenance. In this paper, we also propose an approach for route maintenance that considerably reduces control overheads as shown by the simulation and has shown less delay in routing convergence.

Publisher

Walter de Gruyter GmbH

Subject

General Computer Science

Reference27 articles.

1. 1. Boutaba, R., M. A. Salahuddin, N. Limam et al. A Comprehensive Survey on Machine Learning for Networking: Evolution, Applications and Research Opportunities. – J Internet Serv. Appl., Vol. 9, 2018, No 16. https://doi.org/10.1186/s13174-018-0087-210.1186/s13174-018-0087-2

2. 2. Liang, X., I. Balasingham, S.-S. Byun. A Multi-Agent Reinforcement Learning Based Routing Protocol for Wireless Sensor Networks. – In: Proc. of 2008 IEEE International Symposium on Wireless Communication Systems, Reykjavik, 2008, pp. 552-557. DOI: 10.1109/ISWCS.2008.4726117.10.1109/ISWCS.2008.4726117

3. 3. Sarasvathi, V., N. Ch. S. N. Iyengar, S. Saha. An Efficient Interference Aware Partially Overlapping Channel Assignment and Routing in Wireless Mesh Networks. – International Journal of Communication Networks and Information Security (IJCNIS), March 2014.

4. 4. Sarasvathi, V., N Ch. S. N. Iyengar. Centralized Rank-Based Channel Assignment for Multi-Radio Multi-Channel Wireless Mesh Networks. – Procedia Technology, Elsevier, Vol. 4, January 2012, pp. 182-186.10.1016/j.protcy.2012.05.027

5. 5. Sarasvathi, V., N. Ch. S. N. Iyengar, S. Saha. QoS Guaranteed Intelligent Routing Using Hybrid PSO-GA in Wireless Mesh Networks. – Cybernetics and Information Technologies, Vol. 15, 2015, No 1, pp. 69-83.10.1515/cait-2015-0007

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3